Category Archives: NW Pacific

Update: Fukushima Derived Contamination in Pacific Surface Water Up Until 2017

Northeast subarctic Pacific from the deck of the Canadian Coast Guard Ship J.P. Tully in September 2

By Jay T. Cullen

The purpose of this post is to summarize a recently published, peer-reviewed study that documents levels of Fukushima derived contamination in surface waters of the Pacific Ocean. This post is part of an ongoing series aimed at communicating scientifically derived information about the impact of the disaster on marine environmental and public health. Michio Aoyama and colleagues measured the activity of Cesium-137 (137Cs, half life ~30 years) and Cesium-134 (134Cs, half life ~ 2 years) in seawater collected from the western Pacific Ocean including waters off the coast of Fukushima Prefecture from 2011-2017. They found the following:

  • Contamination decreased dramatically and rapidly in waters offshore of the Fukushima Daiichi Nuclear Power Plant (FDNPP) from maximum values of ~3000 Becquerel per cubic meter (Bq m-3) of seawater in 2011 to values  in 2015-16 of ~2-3 Bq m-3. This precipitous decline is consistent with the ongoing but relatively low rates of release of radionuclides from the site compared to the bulk of contamination that was released in March-April 2011.
  • Levels of 137Cs close to FDNPP now are similar to levels of contamination present there before the disaster occurred (1.5-2 Bq m-3) owing to atmospheric nuclear weapons testing in the middle of the 20th century.
  • Levels in the western Pacific were around 1-7 Bq m-3 in 2011-2012 but stabilized at lower values in 2017.

Levels being measured in nearshore and offshore waters in the western Pacific near to Japan do not approach levels known to represent a credible risk for ocean or public health. These results in the western Pacific are consistent with what the Integrated Fukushima Ocean Radionuclide Monitoring (InFORM) project is finding in the eastern Pacific off of North America.


Aoyama and others recently published their study in the Journal of Environmental Radioactivity. The collected and analyzed surface seawater for the presence of radiocesium isotopes between 2011 and 2017 in waters of the western Pacific in the following locations:

AoyamaetalFig1.jpg
Boundaries of areas (boxes) sampled by Aoyama et al. (2018) in the western and central Pacific Ocean.

The activity of 137Cs and 134Cs in Bq m-3 with time that they found are summarized in the following figure:

1-s2.0-S0265931X17307750-gr2_lrg.jpg
Long term trends (2011-2017) in radiocesium activity in boxes defined in the first figure. Solid blue squares are 137Cs activity concentration and open red circles represent 134Cs.

The researchers found that in Box 2 (closest to the FDNPP) contamination in surface waters offshore were highest in early 2011 coincident with the largest releases from the site in March-April of that year when the vast majority of radionuclides were released to the atmosphere and directly to the ocean.  Values dropped dramatically so that by 2014-2016 levels were ~3 Bq m-3 and similar to levels of contamination measured before the disaster occurred owing to nuclear weapons testing that occurred in the 1950s-60s. Note that the concentrations of 134Cs diminish relative to 137Cs, and the red symbols on the figure diverge from the blue symbols, because 134Cs has an ~2 year half life and is decaying away from the environment much more rapidly. Indeed, it is becoming increasingly challenging analytically to detect Fukushima 134Cs in environmental samples.  Contamination farther offshore in Boxes 4-6 indicate that maximum levels of contamination from Fukushima approached by did not exceed 200 Bq m-3 in 2011 and are now ~2-3 Bq m-3.

Based on best estimates of how much radiocesium was released from FDNPP in March-April 2011 the authors used a model of the water circulation and mixing in the Pacific to predict the levels and movement of Fukushima 134Cs in the Pacific from April 2012 until October 2016.  The results of the modeling study are summarized in the following figure:

1-s2.0-S0265931X17307750-gr3b_lrg.jpg
Horizontal distribution of 134Cs from Fukushima for the period April 2012 to October 2016. Open circles represent observations/measurements of 134Cs while shading reflects model results.

What the model and observations indicate is that the bulk of contamination from the site went into the Pacific Ocean in 2011 and that rates of release from the site after that time are very small in comparison. Most of the Fukushima contamination is now in the eastern Pacific near to North America and that levels in behind the main body of contamination are difficult to detect.  Similarly, the lack of appreciable 134Cs and 134Cs/137Cs activity ratios close to FDNPP indicate that there is little evidence for ongoing fission in the reactors at the site as is commonly speculated by those with little scientific training.  The levels the scientific community is measuring close to FDNPP and those expected and measured in waters close to North America do not represent a significant risk to the marine ecosystem or public health.

The Fukushima InFORM project will continue its monitoring activities in the eastern Pacific until Spring 2019.

Advertisements

Open Access Review of Fukushima Radionuclide Source Term, Fate and Impact in Pacific

Fig1Buesseleretal2017.png
Schematic of Fukushima Daiichi sources of 137-Cs from Buesseler et al. (in press). Atmospheric fallout (1) and direct ocean discharges (2) represent total petabecquerels (PBq = 10^15 Bq) released in the first month of the meltdowns. Groundwater fluxes (3) and river runoff (4) are approximate ranges for the first year in terabecquerels (TBq = 10^12 Bq), a unit 1,000 times smaller than the PBq used for fallout and direct discharge. Details on source term estimates can be found in the paper (http://www.annualreviews.org/doi/abs/10.1146/annurev-marine-010816-060733). (Buesseler et al. 2017)

by Jay T Cullen

The purpose of this post is to bring to the attention of readers here a review of the available measurements and science based investigations of the Fukushima Daiichi Nuclear Power Plant (FDNPP) and its impact on the Pacific Ocean ecosystem and public health. This post is part of an ongoing effort to summarize scientifically rigorous information about the disaster for interested readers. The new paper is a product of a working group on radioactivity in the ocean convened by the Scientific Committee on Ocean Research (SCOR) an international non-governmental non-profit organization. I highly recommend this paper for anyone who wishes to better understand what the international scientific community has found about the marine release, fate and impact of FDNPP-derived radionuclides in the marine environment.  The working group was made up of 10 experts from 9 different countries, including Japan, and published the open access paper in Annual Reviews.  The main findings of the review were as follows:

  • The amount of 137Cs released from the plant was ~50-fold less than the fall out from nuclear weapons testing in the 20th century and ~5-fold lower than that released from Chernobyl in 1986. Total releases from Fukushima are similar to the discharges of 137Cs from the nuclear fuel reprocessing plant Sellafield in the UK
  • Initial releases in the weeks to months after the disaster which began on March 11, 2011 dwarf those from aggregated ongoing releases from the plant site
  • The majority of radionuclide releases ended up in the Pacific Ocean with most deposition and input occurring close to the FDNPP
  • Current range of estimates of the total 137Cs ocean source term are 15-25 PBq (PBq = 1015 Becquerel where a Bq is one nuclear decay event per second). While many other radionuclides were released from FDNPP, the most likely isotopes to represent a health risk to the marine ecosystem and public are those of Cs given their longer half-lives for radioactive decay (134Cs = ~2 yrs; 137Cs = ~30 yrs) and higher relative abundance compared to other isotopes of concern in the FDNPP source term
  • Because Cs is very soluble it rapidly dispersed in the ocean after the disaster given mixing, transport and dilution by ocean currents.  Peak levels of 137Cs occurred close to the plant in 2011 where activity concentrations near FDNPP was tens of millions of times higher than before the accident. By 2014 137Cs concentrations in the central North Pacific was about six times the remaining weapons testing fallout and about 2-3 times higher than prior fallout levels in the northeast Pacific near to North America. Most of the fallout remains concentrated in the top few hundred meters of the ocean. Measurements being made by the Fukushima InFORM project indicate that maximum 137Cs levels off the North American coast are likely to occur this year before declining to levels associated with background nuclear weapon testing before the accident by about the end of this decade
  • There are unlikely to be measurable effects on marine life with the exception of coastal areas very close to FDNPP immediately after the disaster. Monitoring of fish species in Fukushima Prefecture show that about 50% of samples in coastal waters had radiocesium levels above the Japanese 100 Bq kg-1 limit, but that by 2015 this had dropped to less than 1% measuring over the limit. High levels continue to be found in fish around and in the FDNPP port
  • Given levels in seawater and marine organisms measurable impacts to human health through contact with the ocean and the consumption of seafoods are very unlikely

There are many informative graphics and moderately technical summaries of available studies found in the new paper.  The authors highlight the difficulty of monitoring radionuclides in the ocean  given the dynamic nature of the sea and logistical challenges presented by the temporal and spatial scales and low levels of FDNPP derived contamination going forward.  In addition to providing ongoing assessments of risk to the environment from the disaster it is likely that useful information about ocean circulation will be obtained through continued monitoring efforts.

Dramatic Decrease of Fukushima Derived Radionuclides in the Northwest Pacific Ocean 2011-2012

By Jay T. Cullen

A schematic view of the formation and subduction of mode waters in the North Pacific

The purpose of this diary is to report on a recently published (Jan 2015) open-access, peer reviewed study which examined the activities of 137Cs (half life 30.2 yr), 134Cs (half life ~2.1 yr) and 90Sr (half life ~28.8 yr) in the northwest Pacific off the coasts of Japan and China. The diary is part of a ongoing effort to communicate the results of scientific research into the impact of the Fukushima Dai-ichi nuclear disaster on environmental and public health. Men and colleagues report on how activities of these fission produced isotopes changed between three research expeditions in June 2011, December 2011 and June 2012. Activities in seawater decreased dramatically through time for all three isotopes consistent with very high release rates measured from the Fukushima site in March-April 2011 followed by ongoing but many orders of magnitude (10,000 – 100,000 fold) lower releases from the site thereafter. By 2012 the impact of the Fukushima releases could be still be detected in most samples for Cs isotopes however 90Sr distributions were much more uniform with the highest measured activity only slightly above the pre-Fukushima background. These results are consistent with:

  1. the relatively small source term for 90Sr from compared with the Cs isotopes from Fukushima as determined by measurements of air, soil and water after the disaster
  2. the much lower Fukushima derived activities for these isotopes in the eastern Pacific off of North America being measured given decay and mixing of the contamination as it is transported by ocean currents

Continue reading Dramatic Decrease of Fukushima Derived Radionuclides in the Northwest Pacific Ocean 2011-2012

Release, Dispersion and Fate of Radioactive Strontium From Fukushima in the Northwest Pacific Ocean

By Jay T. Cullen

The purpose of this diary is to summarize recent models and measurements of the release of strontium-90 (90-Sr, half life 28.8 yr) to the ocean resulting from the triple meltdowns at the Fukushima-Daiichi nuclear power plant in March 2011. This post is part of an ongoing series aimed at understanding the impact of the disaster on the North Pacific Ocean and residents of the west coast of North America. 90-Sr is a beta-emitting element that is a radiological health concern given its relatively long half life and similar chemistry to the nutrient calcium (Ca). Previous peer-reviewed work indicate that releases of 90-Sr were about 30-10,000 fold less than 137-Cs and similar to the release of 90-Sr from the Chernobyl disaster in 1986 and about 600-fold lower than the releases from atmospheric weapons tests that peaked in the mid-1960’s. Given maximal release rates after the disaster, modeled activities of 90-Sr in the marine foodweb and in fish that accounts for bioconcentration and accumulation predict maximal dose rates from Fukushima to human consumers three orders of magnitude less than doses owing to the presence of 137-Cs in marine products and thus well below maximum dose limits thought to be detrimental to public health. Continue reading Release, Dispersion and Fate of Radioactive Strontium From Fukushima in the Northwest Pacific Ocean

Authors Lower Fukushima Cesium in North Pacific By Order of Magnitude

By Jay T. Cullen

Introduction

One of the goals of the InFORM project is to make measurements of radionuclides in the North Pacific Ocean to determine maximum activities that will determine impacts on the marine ecosystem and residents of the west coast. The purpose of this post is to bring to the attention of readers a recently published correction to a prominent model that predicts the activity of Fukushima derived Cesium-137 (137-Cs, half life ~30 years) in seawater of the North Pacific. The diary is part of an ongoing series aimed at discussing research addressing the impact of the Fukushima nuclear disaster on the health of the North Pacific Ocean and inhabitants of North America’s west coast. Predictions of a model by Rossi and colleagues published in Deep-Sea Research in 2013 of the evolution of the plume of seawater contaminated by the Fukushima triple meltdowns are an order of magnitude too high. Rather than a range of ~1-30 Bq/m^3 reported previously maximum activities off the west coast of North America are likely to be ~3 Bq/m^3 or about more than 25 times lower than maximum activities measured in the Pacific in the mid-20th century resulting from atmospheric weapons tests. These activities are not likely to represent significant radiological health risks to the North Pacific ecosystem or residents of the North American west coast.


A paper by Rossi et al. (2013) used a Lagrangian model to predict the temporal and spatial evolution of the seawater plume contaminated by the Fukushima nuclear disaster beginning in March 2011. The model predicted a range of 10-30 Bq/m^3 137-Cs in waters off the coast of North America at 49 degrees North latitude as demonstrated in the figure shown below:

Activities of 137-Cs predicted by the Rossi et al. (2013) model on the continental shelves of North America at two latitudes and off Hawaii over time.

This model predicted higher maximum 137-Cs activities in seawater in the North Pacific compared with a similar model published by Behrens et al. (2012) that had maximum activities off of North America reaching only ~1-2 Bq/m^3.

Recently, after comments from Professor Michio Aoyama of Japan, Rossi and colleagues recognized an error in their model and have published a correction to their 2013 study here. The error resulted in a factor of 10 overestimation of maximum activities of 137-Cs in the Pacific such that maximum 137-Cs off N. America will likely be between 1 and 3 Bq/m^3. The corrections to the model do not affect the conclusions of the study and results from the 2013 study are easy scaled to the more accurate values given the Langrangian approach used by the authors in the original work.

The figure below shows the time evolution of the plume at various latitudes along the international date line and compares the model output with measurements made by Aoyama et al. (2013) along the international dateline at about 40 degrees N in 2012.

Activities of 137-Cs predicted by the Rossi et al. model along the international dateline in the N. Pacific over time at various latitudes.

The factor of 10 lower activity correction better agrees with the Behrens et al. (2012) modeling study and measurements of 137-Cs in seawater made by Japanese and North American scientists.

Maximum activities of ~1-3 Bq/m^3 as the heart of the contaminated plume reaches the North American coast in the coming 2 year period are roughly 25-fold lower than 137-Cs activities in the North Pacific circa 1960 resulting from atmospheric weapons testing. Therefore, it is unlikely that 137-Cs activities of 3 Bq/m^3 or associated radionuclides released at lower total activities from Fukushima will represent significant health risks to the North Pacific ecosystem.

Ongoing monitoring of radionuclide activities in the North Pacific is required to ground-truth models of Pacific Ocean circulation and plume evolution and to provide the best information to determine likely impact to residents of North America.