Category Archives: Cesium

IAEA Affirms Japan’s Fukushima-Related Radioactivity Monitoring

by Tim Hornyak
11 October 2017
Originally published by Eos, a periodical of the American Geophysical Union

Laboratories outside Japan have validated the results. Marine radioactivity levels from the nuclear disaster have fallen, but questions remain years after the meltdown. Continue reading IAEA Affirms Japan’s Fukushima-Related Radioactivity Monitoring

Advertisements

Scientists Find New Source of Radioactivity from Fukushima Disaster

by WHOI Media Relations
Published 2 October 2017

Scientists have found a previously unsuspected place where radioactive material from the Fukushima Dai-ichi nuclear power plant disaster has accumulated—in sands and brackish groundwater beneath beaches up to 60 miles away. The sands took up and retained radioactive cesium originating from the disaster in 2011 and have been slowly releasing it back to the ocean.

“No one is either exposed to, or drinks, these waters, and thus public health is not of primary concern here,” the scientists said in a study published October 2 in the Proceedings of the National Academy of Sciences. But “this new and unanticipated pathway for the storage and release of radionuclides to the ocean should be taken into account in the management of coastal areas where nuclear power plants are situated.”

The research team—Virginie Sanial, Ken Buesseler, and Matthew Charette of Woods Hole Oceanographic Institution and Seiya Nagao of Kanazawa University—hypothesize that high levels of radioactive cesium-137 released in 2011 were transported along the coast by ocean currents. Days and weeks after the accident, waves and tides brought the cesium in these highly contaminated waters onto the coast, where cesium became “stuck” to the surfaces of sand grains. Cesium-enriched sand resided on the beaches and in the brackish, slightly salty mixture of fresh water and salt water beneath the beaches.

WHOI Oct17 FukushimaCsFigure1280_472593
The new study revealed a previously unsuspected pathway for radioactive material to be transported, stored for years, and subsequently released far from the site where it was initially discharged.
Illustration by Natalie Renier, Woods Hole Oceanographic Institution

But in salt water, cesium no longer “sticks” to the sand. So when more recent waves and tides brought in salty seawater from the ocean, the brackish water underneath the beaches became salty enough to release the cesium from the sand, and it was carried back into the ocean.

“No one expected that the highest levels of cesium in ocean water today would be found not in the harbor of the Fukushima Dai-ichi nuclear power plant, but in the groundwater many miles away below the beach sands,” said Sanial.

The scientists estimated that the amount of contaminated water flowing into the ocean from this brackish groundwater source below the sandy beaches is as large as the input from two other known sources: ongoing releases and runoff from the nuclear power plant site itself, and outflow from rivers that continue to carry cesium from the fallout on land in 2011 to the ocean on river-borne particles. All three of these ongoing sources are thousands of times smaller today compared with the days immediately after the disaster in 2011.

The team sampled eight beaches within 60 miles of the crippled Fukushima Dai-ichi Nuclear Power Plant between 2013 and 2016. They plunged 3- to 7-foot-long tubes into the sand, pumped up underlying groundwater, and analyzed its cesium-137 content. The cesium levels in the groundwater were up to 10 times higher than the levels found in seawater within the harbor of the nuclear power plant itself. In addition, the total amount of cesium retained more than 3 feet deep in the sands is higher than what is found in sediments on the seafloor offshore of the beaches.

Cesium has a long half-life and persists in the environment. In their analyses of the beaches, the scientists detected not only cesium-137, which may have come from the Dai-ichi plant or from nuclear weapons tested in the 1950s and1960s, but also cesium-134, a radioactive form of cesium that can only come only from the 2011 Fukushima accident.

The researchers also conducted experiments on Japanese beach samples in the lab to demonstrate that cesium did indeed “stick” to sand grains and then lost their “stickiness” when they were flushed with salt water.

“It is as if the sands acted as a ‘sponge’ that was contaminated in 2011 and is only slowly being depleted,” said Buesseler.

“Only time will slowly remove the cesium from the sands as it naturally decays away and is washed out by seawater,” said Sanial.

“There are 440 operational nuclear reactors in the world, with approximately one-half situated along the coastline,” the study’s authors wrote. So this previously unknown, ongoing, and persistent source of contamination to coastal oceans “needs to be considered in nuclear power plant monitoring and scenarios involving future accidents.”

North Korean Atmospheric Thermonuclear Test: How much contamination can we expect?

By Jay T. Cullen

The purpose of this post is to conduct a thought experiment to arrive at (I hope) a useful estimate of how much radioactive contamination might occur if North Korea detonates a thermonuclear weapon in the lower atmosphere over the North Pacific Ocean.  There are a significant number of unknowns, not the least of which is the fundamental uncertainty as to whether the rogue nation has successfully tested a Teller-Ulam style thermonuclear weapon or not.  I explain my assumptions and compare the resulting global release of radioisotopes that represent a radiological health concern from such a test to the amounts recently released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster, the Chernobyl disaster and aggregate atmospheric weapons testing in the last century. I invite comments and an accounting of the approach used here and how it might be improved. Continue reading North Korean Atmospheric Thermonuclear Test: How much contamination can we expect?

How much Fukushima contamination is in migratory Pacific fish?

Proposed migration pathways of North Pacific predators.

The purpose of this post is to report on a recently published, peer-reviewed study that investigated the levels of Fukushima derived contamination in migratory Pacific predators. The post is part of an ongoing effort to inform interested members of the public what the scientific community is finding about the impact of the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster on the environmental and human health. Madigan and colleagues looked for radiocesium (134Cs, half life ~ 2 years; 137Cs, half life ~30 years) in a variety of large, predatory organisms in the North Pacific Ocean between 2012 and 2015.  Their results were as follows:

  • Fukushima derived 134Cs could not be detected in any of the organisms with the exception of a single olive ridley sea turtle with trace levels (0.1 Bq kg-1 dry weight)
  • Levels of 137Cs varied in the organisms but were generally unchanged compared with levels measured in organisms prior to the FDNPP disaster (pre-2011)
  • Levels of 137Cs were roughly 10 to 100-fold lower in the organisms than levels of naturally occurring Potassium-40 (40K)
  • Neither the levels of radiocesium or 40K approach levels known to represent a significant health risk to the animal or human consumers

These direct measurements of contamination levels in marine predators suggest that assuming that Pacific organisms will accumulate detectable FDNPP contamination is unwise.  Similarly, anxiety and speculation about the dangers of radiocesium bioaccumulation in the face of such data seems unfounded.


Between 2012 and 2015 a total of 91 different organisms from a variety of predatory marine groups were sampled and analyzed for the presence of radiocesium contamination and naturally occurring 40K.  The human made isotope 134Cs, with its relatively short ~2 year half life, serves as a fingerprint of FDNPP contamination as all other human sources are sufficiently distant in the past to have completely decayed away in the environment.  Organisms sampled and their radioisotope content are reported in the following table:

Table1_Madiganetal2017.png

 

With the exception of a single olive ridley sea turtle no detectable (<0.1 Bq kg-1 dry weight) trace of FDNPP 134Cs contamination was found.  Levels of 137Cs found in the organisms were similar to levels measured pre-Fukushima. In addition, the 137Cs levels were less than 0.2% of US FDA levels of concern (370 Bq kg-1 wet weight) and less than 0.05% of US FDA derived intervention levels (1200 Bq kg-1 wet weight).  Simply stated levels in these organisms would have to be >1600-fold higher to be designated unfit for market.  The levels and ionizing radiation dose to consumers from naturally occurring 40K dwarfed those from FDNPP radiocesium.  Radiocesium derived ionizing radiation doses were <1% of those from 40K. Neither the doses from 40K or cesium isotopes approached, even remotely, those known to affect the health of the organisms or consumers of these organisms.

These results are consistent with those of the Integrated Fukushima Ocean Radionuclide Monitoring (InFORM) project. Ongoing, scientifically rigorous, monitoring of the marine environment provides the best evidence with which to gauge the risk that the FDNPP meltdowns represent for marine and public health here in North America.

Measuring Fukushima Contamination in Fish Caught in Hawaii

Yellowfin tuna, Thunnus albacares leaping from the water

By Jay T. Cullen

The purpose of this post is to summarize a recently published, peer reviewed, scientific study that investigated levels of Fukushima derived contamination in fish caught in the North Pacific and sold at market in Hawai’i.  This post is part of an ongoing series dedicated to bringing quality scientifically derived information to readers so that they can form an evidence based opinion regarding the environmental impact of the Fukushima Daiichi Nuclear Power Plant meltdowns. The paper by Azouz and Dulai (both at the University of Hawai’i at Manoa) summarizes levels of human made 134-Cesium (134Cs half life ~2 years) and 137-Cesium (137Cs half life ~30 years) and naturally occurring 40-Potassium (40K half life 1.25 billion years) in 13 different fish purchased in Hawai’i in 2015.  The findings of the study were that:

  1. 3 of the 13 fish had detectable levels (above the 95% confidence interval) of 134Cs which can be linked to the Fukushima disaster
  2. Highest levels of radiocesium were found in ‘ahi tuna with 134Cs and 137Cs of 0.10 ± 0.04 Bq kg-1 and 0.62 ± 0.05 Bq kg-1 respectively
  3. Most of the fish carried no fingerprint of the Fukushima disaster
  4. Levels of radiocesium were well below intervention levels of 1,200 Bq kg-1 set by the United States Food and Drug Administration
  5. Doses to fish consumers from human made radioisotopes were 30-1,000 fold lower than the dose experienced because of naturally occurring 40K in the fish
  6. Neither the effective dose from the natural nor the human made radioisotopes represent a significant health risk to consumers of the fish given scientifically established dose-response relationships

These results agree with the results of the Integrated Fukushima Ocean Radionuclide Monitoring Project (InFORM) I head up at the University of Victoria which has been making similar measurements on North Pacific fish returning to rivers in North America.

The Azouz and Dulai paper was published recently in the journal Pacific Science and can be found here.  The authors obtained 13 different species (Ahi, Albacore Tuna, King Salmon, Cod, Dover Sole, Halibut, Mahi Mahi, Monchong, Onaga, Opah, Opakapaka, Swordfish and Yellowfin Tuna) of fish that were caught in the North Pacific (>20oN) and commonly consumed in Hawai’i at local markets.  Information about the range and size of the fish are given in Table 1:

t01_107.jpeg

Levels of Radiocesium in Fish From Hawai’i

Samples of the fish tissue were freeze dried and homogenized before gamma emitting radioisotopes were measured using a gamma spectrometer by counting samples for a period of 7 days. Levels of 134Cs, because of its short half life, serve as a fingerprint of Fukushima in samples as previous sources of this human made isotope (e.g. 20th century nuclear weapons testing and the Chernobyl disaster) are sufficiently far in the past that all of the isotope has decayed away and is no longer present in the environment.  Results of the analyses are summarized in the following figure:

f01_107.jpeg
Fig. 1 Cesium activities in fish collected in the North Pacific in 2015 and available for consumption in Hawai’i

In 3 fish statistically significant (>95% confidence interval) but trace levels of 134Cs was detected.  Given that 137Cs/134Cs ratio in vast majority of the release from the Fukushima site was ~1 the authors were able to determine the fraction of radiocesium present in these fish owing to Fukushima versus legacy sources like atmospheric weapons testing.  Maximum radiocesium levels in the fish approached 0.7-0.8 Bq kg-1 which is more than 1,500 fold lower than conservative levels thought be a health risk set by the FDA (1,200 Bq kg-1).  Most fish had radiocesium attributable to weapons testing fallout. Fukushima radiocesium accounted for ~60% of the radiocesium detected in an Ahi measured by the authors.

Levels of Naturally Occurring 40-Potassium in Fish

Naturally occurring 40K decays with a half life of 1.25 billion years and in taken up into the tissue of marine fish.  The levels of 40K in the fish measured by the authors are summarized in the table below:

t02_107.jpeg
Levels of artificial radiocesium and naturally occurring 40-K in fish from Hawai’i

Activity of 40K (Bq kg-1) tended be ~100 fold higher in the fish tissue than radiocesium activities.

Effective Dose of Ionizing Radiation and Health Impact to Fish Consumers

The authors determined the impact of fish consumption on the ionizing radiation dose experienced by individuals consuming an average amount of fish per year (24.1 kg per year or 53.1 pounds per year).  The table below compares the dose in nanoSieverts per year (10-9 Sv yr-1) owing to historic and Fukushima sourced radiocesium and naturally occurring 40K in seafood.

t04_107.jpeg
Committed effective dose to fish consumers from artificial (human made) and naturally occurring 40-K

Converting isotope activities in the fish to dose demonstrates that 40K is responsible for ~100 times higher dose than 134Cs + 137Cs. Doses to humans from consuming the fish owing to radiocesium were 0.02–0.2 µ Sv yr-1, while doses of 6–20 µ Sv yr-1 were contributed by the natural 40K present in the same fish. These levels of radioisotopes and the calculated doses to consumers are similar to those reported by the InFORM project who have looked at Pacific salmon returning to rivers and streams in North America over the last 3-4 years. It is important to note that the bulk of ionizing radiation dose to fish consumers normally results from 210-Polonium (210Po half life 138 days) naturally present in the fish but this isotope was not measured in the Azouz and Dulai study.

Conclusion

Fukushima derived radioisotopes 134Cs and 137Cs were detected (at 95% confidence interval) in 3 of 13 fish caught in the North Pacific and commonly consumed by people living in the Hawaiian islands.  The radiocesium in most fish reflected contamination largely present in the North Pacific Ocean owing to atmospheric weapons testing during the last century.  The levels of radiocesium in the fish were a small fraction of the levels of naturally occurring radioisotopes like 40K.  The committed effective dose of ionizing radiation to fish consumers is dominated by the naturally occurring isotopes and do not remotely approach levels known to represent a significant or measurable health risk to human beings.  The results of this study agree with previously published research and results of the InFORM project which focuses on the impact of the Fukushima disaster on the marine ecosystem and public health in North America.