The purpose of this diary is to summarize recent models and measurements of the release of strontium-90 (90-Sr, half life 28.8 yr) to the ocean resulting from the triple meltdowns at the Fukushima-Daiichi nuclear power plant in March 2011. This post is part of an ongoing series aimed at understanding the impact of the disaster on the North Pacific Ocean and residents of the west coast of North America. 90-Sr is a beta-emitting element that is a radiological health concern given its relatively long half life and similar chemistry to the nutrient calcium (Ca). Previous peer-reviewed work indicate that releases of 90-Sr were about 30-10,000 fold less than 137-Cs and similar to the release of 90-Sr from the Chernobyl disaster in 1986 and about 600-fold lower than the releases from atmospheric weapons tests that peaked in the mid-1960’s. Given maximal release rates after the disaster, modeled activities of 90-Sr in the marine foodweb and in fish that accounts for bioconcentration and accumulation predict maximal dose rates from Fukushima to human consumers three orders of magnitude less than doses owing to the presence of 137-Cs in marine products and thus well below maximum dose limits thought to be detrimental to public health. Continue reading Release, Dispersion and Fate of Radioactive Strontium From Fukushima in the Northwest Pacific Ocean