Tag Archives: Aoyama

Update: Fukushima Derived Contamination in Pacific Surface Water Up Until 2017

Northeast subarctic Pacific from the deck of the Canadian Coast Guard Ship J.P. Tully in September 2

By Jay T. Cullen

The purpose of this post is to summarize a recently published, peer-reviewed study that documents levels of Fukushima derived contamination in surface waters of the Pacific Ocean. This post is part of an ongoing series aimed at communicating scientifically derived information about the impact of the disaster on marine environmental and public health. Michio Aoyama and colleagues measured the activity of Cesium-137 (137Cs, half life ~30 years) and Cesium-134 (134Cs, half life ~ 2 years) in seawater collected from the western Pacific Ocean including waters off the coast of Fukushima Prefecture from 2011-2017. They found the following:

  • Contamination decreased dramatically and rapidly in waters offshore of the Fukushima Daiichi Nuclear Power Plant (FDNPP) from maximum values of ~3000 Becquerel per cubic meter (Bq m-3) of seawater in 2011 to values  in 2015-16 of ~2-3 Bq m-3. This precipitous decline is consistent with the ongoing but relatively low rates of release of radionuclides from the site compared to the bulk of contamination that was released in March-April 2011.
  • Levels of 137Cs close to FDNPP now are similar to levels of contamination present there before the disaster occurred (1.5-2 Bq m-3) owing to atmospheric nuclear weapons testing in the middle of the 20th century.
  • Levels in the western Pacific were around 1-7 Bq m-3 in 2011-2012 but stabilized at lower values in 2017.

Levels being measured in nearshore and offshore waters in the western Pacific near to Japan do not approach levels known to represent a credible risk for ocean or public health. These results in the western Pacific are consistent with what the Integrated Fukushima Ocean Radionuclide Monitoring (InFORM) project is finding in the eastern Pacific off of North America.

Aoyama and others recently published their study in the Journal of Environmental Radioactivity. The collected and analyzed surface seawater for the presence of radiocesium isotopes between 2011 and 2017 in waters of the western Pacific in the following locations:

AoyamaetalFig1.jpg
Boundaries of areas (boxes) sampled by Aoyama et al. (2018) in the western and central Pacific Ocean.

​The activity of 137Cs and 134Cs in Bq m-3 with time that they found are summarized in the following figure:

1-s2.0-S0265931X17307750-gr2_lrg.jpg
Long term trends (2011-2017) in radiocesium activity in boxes defined in the first figure. Solid blue squares are 137Cs activity concentration and open red circles represent 134Cs.

The researchers found that in Box 2 (closest to the FDNPP) contamination in surface waters offshore were highest in early 2011 coincident with the largest releases from the site in March-April of that year when the vast majority of radionuclides were released to the atmosphere and directly to the ocean.  Values dropped dramatically so that by 2014-2016 levels were ~3 Bq m-3 and similar to levels of contamination measured before the disaster occurred owing to nuclear weapons testing that occurred in the 1950s-60s. Note that the concentrations of 134Cs diminish relative to 137Cs, and the red symbols on the figure diverge from the blue symbols, because 134Cs has an ~2 year half life and is decaying away from the environment much more rapidly. Indeed, it is becoming increasingly challenging analytically to detect Fukushima 134Cs in environmental samples.  Contamination farther offshore in Boxes 4-6 indicate that maximum levels of contamination from Fukushima approached by did not exceed 200 Bq m-3 in 2011 and are now ~2-3 Bq m-3.

Based on best estimates of how much radiocesium was released from FDNPP in March-April 2011 the authors used a model of the water circulation and mixing in the Pacific to predict the levels and movement of Fukushima 134Cs in the Pacific from April 2012 until October 2016.  The results of the modeling study are summarized in the following figure:

1-s2.0-S0265931X17307750-gr3b_lrg.jpg
Horizontal distribution of 134Cs from Fukushima for the period April 2012 to October 2016. Open circles represent observations/measurements of 134Cs while shading reflects model results.

What the model and observations indicate is that the bulk of contamination from the site went into the Pacific Ocean in 2011 and that rates of release from the site after that time are very small in comparison. Most of the Fukushima contamination is now in the eastern Pacific near to North America and that levels in behind the main body of contamination are difficult to detect.  Similarly, the lack of appreciable 134Cs and 134Cs/137Cs activity ratios close to FDNPP indicate that there is little evidence for ongoing fission in the reactors at the site as is commonly speculated by those with little scientific training.  The levels the scientific community is measuring close to FDNPP and those expected and measured in waters close to North America do not represent a significant risk to the marine ecosystem or public health.

The Fukushima InFORM project will continue its monitoring activities in the eastern Pacific until Spring 2019.

Continue reading Update: Fukushima Derived Contamination in Pacific Surface Water Up Until 2017

Advertisements

Authors Lower Fukushima Cesium in North Pacific By Order of Magnitude

By Jay T. Cullen

Introduction

One of the goals of the InFORM project is to make measurements of radionuclides in the North Pacific Ocean to determine maximum activities that will determine impacts on the marine ecosystem and residents of the west coast. The purpose of this post is to bring to the attention of readers a recently published correction to a prominent model that predicts the activity of Fukushima derived Cesium-137 (137-Cs, half life ~30 years) in seawater of the North Pacific. The diary is part of an ongoing series aimed at discussing research addressing the impact of the Fukushima nuclear disaster on the health of the North Pacific Ocean and inhabitants of North America’s west coast. Predictions of a model by Rossi and colleagues published in Deep-Sea Research in 2013 of the evolution of the plume of seawater contaminated by the Fukushima triple meltdowns are an order of magnitude too high. Rather than a range of ~1-30 Bq/m^3 reported previously maximum activities off the west coast of North America are likely to be ~3 Bq/m^3 or about more than 25 times lower than maximum activities measured in the Pacific in the mid-20th century resulting from atmospheric weapons tests. These activities are not likely to represent significant radiological health risks to the North Pacific ecosystem or residents of the North American west coast.


A paper by Rossi et al. (2013) used a Lagrangian model to predict the temporal and spatial evolution of the seawater plume contaminated by the Fukushima nuclear disaster beginning in March 2011. The model predicted a range of 10-30 Bq/m^3 137-Cs in waters off the coast of North America at 49 degrees North latitude as demonstrated in the figure shown below:

Activities of 137-Cs predicted by the Rossi et al. (2013) model on the continental shelves of North America at two latitudes and off Hawaii over time.

This model predicted higher maximum 137-Cs activities in seawater in the North Pacific compared with a similar model published by Behrens et al. (2012) that had maximum activities off of North America reaching only ~1-2 Bq/m^3.

Recently, after comments from Professor Michio Aoyama of Japan, Rossi and colleagues recognized an error in their model and have published a correction to their 2013 study here. The error resulted in a factor of 10 overestimation of maximum activities of 137-Cs in the Pacific such that maximum 137-Cs off N. America will likely be between 1 and 3 Bq/m^3. The corrections to the model do not affect the conclusions of the study and results from the 2013 study are easy scaled to the more accurate values given the Langrangian approach used by the authors in the original work.

The figure below shows the time evolution of the plume at various latitudes along the international date line and compares the model output with measurements made by Aoyama et al. (2013) along the international dateline at about 40 degrees N in 2012.

Activities of 137-Cs predicted by the Rossi et al. model along the international dateline in the N. Pacific over time at various latitudes.

The factor of 10 lower activity correction better agrees with the Behrens et al. (2012) modeling study and measurements of 137-Cs in seawater made by Japanese and North American scientists.

Maximum activities of ~1-3 Bq/m^3 as the heart of the contaminated plume reaches the North American coast in the coming 2 year period are roughly 25-fold lower than 137-Cs activities in the North Pacific circa 1960 resulting from atmospheric weapons testing. Therefore, it is unlikely that 137-Cs activities of 3 Bq/m^3 or associated radionuclides released at lower total activities from Fukushima will represent significant health risks to the North Pacific ecosystem.

Ongoing monitoring of radionuclide activities in the North Pacific is required to ground-truth models of Pacific Ocean circulation and plume evolution and to provide the best information to determine likely impact to residents of North America.