The Raincoast Education Society has partnered with the University of Victoria and California State University to carry out radionuclide sampling of sea water and kelp, respectively, in Clayoquot Sound. http://raincoasteducation.org/radiation-monitoring
The purpose of this post is to report the most recent results of Kelp Watch 2015 , a program dedicated to monitoring for the presence of Fukushima contamination off our Pacific Coast. This post is the latest in a series dedicated to the public dissemination of information about the impacts of the Fukushima Dai-ichi disaster on the health of the North Pacific Ocean ecosystem and health of North American residents. New results from the third sampling period (January through March 2015) of Kelp Watch 2015 were released on April 6, 2015 and can be found here. As with previously reported results here, here and here no radioactive isotopes from Fukushima were detected in kelp growing at sampling sites spread along our Pacific coast. The absence of 134Cs in kelp suggests that ocean transport of Fukushima contamination had yet to reach North American coastal water. As the contaminated water reaches the shoreline in the coming months Kelp Watch 2015 will help to track the arrival of the plume in time and space. Continue reading Kelp Watch 2015: Most Recent Results Looking for Fukushima Contamination→
This short blog summarizes an open access paper published today reporting results from a Canadian monitoring program tasked with documenting the arrival of ocean borne Fukushima contamination along the North American Pacific coast. This diary is part of an ongoing effort to communicate the best science available on the impacts of the Fukushima Dai-ichi meltdowns on the environment. High quality measurements to look for Fukushima derived radiocesium were made in seawater in the North Pacific and Arctic Oceans from 2011 to early 2014. The authors concluded that:
Fukushima derived radiocesium was first detected 1500 km west of British Columbia Canada in June 2012
Contamination was detected on the continental shelf (near coastal waters) in June 2013
By February 2014 Fukushima radiocesium was present at levels similar to preexisting weapons testing derived 137-Cs
These same models predict that total radiocesium levels from weapons testing fallout and Fukushima will likely reach maximum values of ~3-5 Becquerel per cubic meter (Bq m-3 of seawater in 2015-2016 and then decline to fallout background level of ~1 Bq m-3 by 2021
Fukushima will increase northeastern Pacific water to levels last seen in the 1980’s but does not represent a threat to environmental or human health
The purpose of this diary is to report results from a recently published, peer reviewed study (behind paywall) examining the degree of Fukushima contamination in fungi and soil of western North America. The diary is the most recent contribution to an ongoing series which aims to provide evidence from scientific studies assessing the impact of the Fukushima Daiichi disaster on the environment and the health of residents of North America. Trappe and colleagues measured the activity of cesium isotopes (134-Cs half life ~ 2 years; 137-Cs half life ~30 years) in wild mushrooms, soil and leaf litter of the west coast from California up to Vancouver Island. The conclusions of the study were as follows:
No activity measurements exceeded levels thought to impact human health
137-Cs activity increased in fungi and soil towards the north
134-Cs increased to the south in leaf litter
Chanterelles did not significantly bioconcentrate Cs isotopes
137-Cs and 134-Cs activities were highly variable from sample to sample
137-Cs levels largely reflected non-Fukushima sources from either atmospheric weapons tests in the last century or the Chernobyl disaster in 1986
Sea star with Sea Star Wasting Disease photographed by the author at Botanical Beach near Port Renfrew BC in July 2014.
This diary summarizes a newly published paper by Hewson and colleagues in Proceedings of the National Academy of Sciences of the USA which investigated the cause of sea star die offs along the west coast of North America. This diary is part of series dedicated to summarizing scientific research on the impact of the triple meltdowns at the Fukushima Dai-ichii nuclear power plant on the North Pacific Ocean and the health of residents of North America. Northeast Pacific sea stars have experienced a mass die off recently and have disappeared from certain coastal ecosystems as a result. The Hewson et al. paper presents evidence that the cause of the wasting disease can be transmitted between affected to healthy individuals. The disease-carrying agent is virus sized and likely sea star-associated densovirus (SSaDV) which is found in greater numbers in diseased versus healthy sea stars. They also detected SSaDV in museum specimens of sea star dating from 1942 indicating that the virus has had a long term presence along the North American west coast.
Photographs of SSWD-affected stars (A) asymptomatic P. helianthoides, (B) symptomatic P. helianthoides, and (C) symptomatic P. ochraceus. Disease symptoms are consistent with loss of turgor, loss of rays, formation of lesions, and animal decomposition. (D) Map showing occurrence of SSWD based on first reported observation. (E) Transmission electron micrograph of negatively stained (uranyl acetate) viruses extracted from an affected wild E. troschelii from Vancouver . The sample contained 20–25-nm diameter nonenveloped icosohedral viral particles on a background of cellular debris (primarily ribosomal subunits) and degraded viral particles of similar morphology.
Hewson and colleagues examined affected and asymptomatic sea stars to demonstrate that an infective agent was responsible for SSWD. To do this they took homogenized SSWD affected sea stars and administered an inoculate or a heat killed inoculate of virus size containing filtrate to tanks containing healthy individuals. Results of these experiments indicate that heat killed inoculates did not lead healthy individuals to develop SSWD while inoculates with potentially live viral particles lead to SSWD symptoms in the previously healthy population. Previously healthy sea stars had very low loads of a virus callled Sea Star-Associated Densovirus (SSaDV) while after developing symptoms much higher amounts of SSaDV were found in the sea stars.
(A) Proportion of stars remaining asymptomatic after inoculation with control (heat-killed) or virus-sized fraction (VSF) of asteroid homogenates in first (Expt 1) and second (Expt 2) challenge. (B) Change in SSaDV load between initiation of viral challenge and termination of experiment (i.e., animal expiry in live challenge or euthanasia of control animals). Note difference in scale.
The authors then looked for the virus in asymptomatic and SSWD affected individuals in the wild finding that affected individuals were about 3 times more likely to be virus carrying than asymptomatic individuals. The virus was also found in plankton, sediments and other echinoderms. The presence of the virus in plankton and in filtration media of public aquaria affected by SSWD is consistent with observations that the disease could spread through ocean currents between infected and uninfected areas of the coast.
The authors conclude by pointing out that the spread of SSWD along our coast is most consistent with an infectious agent. Based on their observations and laboratory experiments this agent is most likely SSaDV which has been present along the coast for at least 72 years. Fukushima in not mentioned once in the article as there is no scientific evidence to relate SSWD to the trace concentrations of Fukushima derived radionuclides present offshore.
The authors identify outstanding questions as follows:
How exactly (by what mechanism) does SSaDV kill sea stars?
Are there other microbial agents involved in the wasting/death process?
What triggers outbreaks of SSWD?
How will the absence of important predators like sea stars affect the marine ecosystem along our coast?
The study highlights the increasingly recognized importance of marine viruses in helping to shape community structure and ecosystem dynamics in the ocean.
The purpose of this post is to report measurements of radioactivity in fish caught off the west coast of Canada based on the work of InFORM team member Dr. Jing Chen. A collaborative effort between Health Canada, Department of Fisheries and Oceans Canada, and the University of Victoria was published in May 2014 in the peer-reviewed, open-access scientific journal Radiation Protection Dosimetry (link). The authors examined the activities of cesium radioisotopes (134-Cs half-life ~2 years and 137-Cs half-life ~30 years) that were released in large quantities due to the triple reactor meltdowns at Fukushima Dai-ichi Nuclear Power Plant in 2011 as well as a naturally occurring polonium isotope (210-Po) that can pose radiological health concerns for human consumers of marine fish. Samples of chum and coho salmon, halibut, sablefish and spiny dogfish were analyzed and none were found to contain detectable levels of Fukushima derived radionuclides. Radiation doses to human consumers were determined by assuming a conservative worst case scenario where Cs isotopes were present at detection limits of the measurement and found to be 18 times lower than doses attributable to the naturally occurring, alpha-emitter 210-Po. The authors conclude that the radiation dose from Fukushima derived isotopes present in fish caught in Canadian waters represent a very small fraction of the annual dose from exposure to natural background radiation. Based on these measurements, at present, Fukushima derived radionuclides in fish do not represent a significant radiological health risk to Canadians. Continue reading Looking For Fukushima Radionuclides in Fish Caught Off the West Coast of Canada→