Category Archives: Cesium

Measurements to Verify Models of the Fukushima Plume: Significant Radioactivity Heading South in the Pacific

by Jay T. Cullen

Introduction

This diary is part of an ongoing series here that aims to report measurements of Fukushima derived radionuclides in the North Pacific Ocean to help determine the likely impact on ecosystem and public health in western North America. The purpose of this diary is to report the results of a recently published study by Kumamoto and colleagues in the open-access journal Scientific Reports. The study measured the activity of Fukushima derived cesium (Cs), a tracer for other radionuclides, in the upper 1000 meters of the western Pacific Ocean along the 149 degree E meridian as of winter 2012. These measurements indicate that 10-60% of the total Fukushima derived 134-Cs in the North Pacific has been transported to the south at a depth of ~300 m below the surface. This result is surprising as most models suggest that transport would be primarily to the east toward North America. The study demonstrates that the amount of Fukushima derived radionuclides being transported to the east towards North America is lower than predicted by previous models and provides important information on the circulation of the ocean.


The disaster at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), precipitated by the earthquake and tsunami on March 11, 2011, resulted in meltdowns at Units 1-3 and a massive release of radionuclides to the North Pacific Ocean by direct discharges from the plant and by deposition of radionuclides released to the atmosphere. While a suite of radionuclides were released, 134-Cs is a useful tracer of Fukushima impact. 134-Cs has a relatively short half-life (~2 years) that unequivocally fingerprints a Fukushima source. It was also released in large quantities and therefore poses a potential radiological threat to organisms. 134-Cs was released along with 137-Cs (half-life = ~30 years) in a 1:1 ratio from Fukushima.

Scientists use a variety of units to measure radioactivity. A commonly used unit is the Becquerel (Bq for short) which represents an amount of radioactive material where one atom decays per second and has units of inverse time (per second). Another unit commonly used is disintegrations per minute (dpm) where the number of atoms undergoing radioactive decay in one minute are counted (so 1 Bq = 60 dpm).

Estimates of direct release of Cs to the ocean were on the order of 11-15 PBq (10^15 Bq) while the deposition of Cs to the surface of the ocean were about 5.8-30 PBq. In 2012 the authors of the study occupied a series of stations along 149degree E as shown in the figure below:

Location of stations sampled for 134-Cs by Kumamoto et al. (2014) in the western Pacific south and east of Japan.

In addition the surface plume of radionuclides that has been modeled and detected (by InFORM team member Dr. John Smith of DFO) in surface currents heading to the east toward North America depth distributions of 134-Cs in the western Pacific show that a concentrated plume of Fukushima derived radionuclides has been transported to the south at a depth of 300 meters:

Cross sectional views of 134Cs activity (Bq/m^3) with depth and latitude along 149 degree East

Based on the integration of the activity of Cs over the depth the authors estimate that about 6 Pbq (10^15 Bq) are present in the subsurface feature being transported to the south. This represents on the order of 10-60% of the total radiocesium that was introduced to the Pacific by the disaster. This helps to explain the lower activities being measured in the eastern Pacific compared to what models predict and suggests that maximum activities on the west coast of North America will likely fall toward the lower end of model predictions that were in the range of 2-30 Bq/m^3. Simply stated more of the radioactive elements released from Fukushima to the Pacific Ocean are headed south rather than east to North America in the plume than previously thought.

More direct measurements of radioactive elements in the North Pacific Ocean through the InFORM project will help to determine what activities are likely on the west coast of North American as the plume arrives from 2013 onward. The measurements or radionuclides in seawater, combined with measurements of radioactive elements in marine organisms, will help to assess the risk of exposure of west coast residents to radionuclides from Fukushima.

Misunderstanding Ocean Transport Models of the Fukushima Radionuclide Plume in the Pacific

by Jay T. Cullen

Introduction

This post is part of an ongoing series that endeavors to provide useful and accurate information about: 1) the fate of Fukushima derived radionuclides in the Pacific Ocean, and, 2) the impact of these radionuclides on the marine ecosystem and the west coast of North America. The purpose of this diary is to draw attention to a number of poorly researched posts about a recently published study (unfortunately this study is behind a publisher pay-wall) in a Chinese journal that predicts a concentrated plume of radioactive elements from Fukushima arriving on the west coast. It is an unfortunate but common example of how news aggregation sites can misinterpret the results of a scientific study and misinform the public.


What models can and cannot say about the Fukushima plume

The study in question by Fu and co-workers published in the Journal of Ocean University of China in 2014 (behind pay-wall unfortunately) is wholly incapable of describing the behavior of dissolved radionuclides in the plume that is now arriving on the west coast of North America.

From the paper the authors themselves state in the methods that:

“In the study, the radioactive pollutant in the ocean is treated as a mixture of multiple Lagrangian particulates, and each particulate represents a radioactive element. The particulates can move in both horizontal and vertical directions, but cannot diffuse and mix with surrounding seawater.”

What this means is that rather than being allowed to mix and diffuse (or decay or sink after becoming associated with particles) the radionuclides are treated as neutrally buoyant drifters. The model, therefore, greatly overestimates the concentrations of radionuclides reaching the west coast of North America in the plume.

For those interested in models using accurate physics that will allow for an accurate prediction of radionuclide concentrations consult the following studies:

Behrens et al. (2012) and Rossi et al. (2013) (behind pay-wall)

Snapshot of the high-resolution (0.1°) model field, taken at the end of the tracer injection period (end of April, model year 0): shading indicates the thickness of the surface mixed layer (in m); contouring illustrates the surface velocity field indicated by local stream lines.
Snapshot of the high-resolution (0.1°) model field, from Behrens et al. taken at the end of the tracer injection period (end of April, model year 0): shading indicates the thickness of the surface mixed layer (in m); contouring illustrates the surface velocity field indicated by local stream lines and clearly identifies the high velocity Kuroshio and Kuroshio extension.

The Behrens et al. study is open-access while the Rossi et al. study is not. Measurements taken in the North Pacific by Canada’s Department of Fisheries and Oceans and InFORM team member Dr. John Smith indicate that the Rossi et al. study predicts the arrival time of the plume on the west coast but overestimates the activity of the Fukushima derived radionuclide 137-Cs. Behrens et al. predict a too late time of arrival but with lower activities that appear to more realistic. It important to note that these models carry the own simplifications and assumptions (e.g. see section 3.4 Caveats of the Behrens et al. (2012) study) and that recent measurements suggest that some of the Fukushima plume is being dispersed to the south rather than to the east in the Pacific (e.g. Kumamoto et al. (2014) open-access; more on this study in a forthcoming post).

Articles that confuse the conclusions of the Chinese study are a good example of poor reporting on an important subject. The example here was originally spawned by Energy News who have a history of inaccurate reporting on Fukushima and then propagated through the web by uncritical followers of the site.

Looking For Fukushima Radionuclides in Fish Caught Off the West Coast of Canada

by Jay T. Cullen

The purpose of this post is to report measurements of radioactivity in fish caught off the west coast of Canada based on the work of InFORM team member Dr. Jing Chen.  A collaborative effort between Health Canada, Department of Fisheries and Oceans Canada, and the University of Victoria was published in May 2014 in the peer-reviewed, open-access scientific journal Radiation Protection Dosimetry (link). The authors examined the activities of cesium radioisotopes (134-Cs half-life ~2 years and 137-Cs half-life ~30 years) that were released in large quantities due to the triple reactor meltdowns at Fukushima Dai-ichi Nuclear Power Plant in 2011 as well as a naturally occurring polonium isotope (210-Po) that can pose radiological health concerns for human consumers of marine fish. Samples of chum and coho salmon, halibutsablefish and spiny dogfish were analyzed and none were found to contain detectable levels of Fukushima derived radionuclides. Radiation doses to human consumers were determined by assuming a conservative worst case scenario where Cs isotopes were present at detection limits of the measurement and found to be 18 times lower than doses attributable to the naturally occurring, alpha-emitter 210-Po. The authors conclude that the radiation dose from Fukushima derived isotopes present in fish caught in Canadian waters represent a very small fraction of the annual dose from exposure to natural background radiation. Based on these measurements, at present, Fukushima derived radionuclides in fish do not represent a significant radiological health risk to Canadians. Continue reading Looking For Fukushima Radionuclides in Fish Caught Off the West Coast of Canada

The Inventories at and Release Estimates for Radionuclides From Fukushima

A Twitter user interested in the InFORM network asked the following question today:

“…do you have a public list of all products in Fukushima emissions?”

It is important to realize that release estimates are not fully constrained and that estimates improve as more and more measurements are made in the environment. A useful, peer-reviewed, open access study that summarizes release estimates is Povinec et al. (2013) published in the journal Biogeosciences. Table 1 from this study is shown below and can be maximized by clicking the image:

PovinecTable1

Full references for the table are available in the Povinec paper by following the link given above.  Estimates of plutonium released by the Fukushima disaster are provided in this summary with peer-reviewed studies linked to within the document. Measurements of Pu in soil, air and water suggest that 1 to 1,000,000 fold less Pu was released from Fukushima compared to 137-Cs emissions given above.

Below we present near comprehensive inventories of radionuclides in the reactor cores of Units 1,2 and 3 and in the spent fuel pools of Units 1,2,3 and 4 at the time of the accident as reported by:

Nishihara, K., H. Iwamoto, K. Suyama. 2012. Estimation of Fuel Compositions in Fukushima-Daiichi Nuclear Power Plant. Japan Atomic Energy Agency, Tokai. Japan.

Nishiharaetal2012JAEA

The following information has been modified from:

Povinec, P.P, K. Hirose and M. Aoyama. Fukushima Accident: Radioactivity Impact on the Environment. 2013. Elsevier Amsterdam.

Tables in the pdf file given just below contain information on the radionuclide, grams of radionuclide present, half-life of element, activity in Bq and ratio to 137-Cs in the core or spent fuel respectively.

Povinec Tables_Fukushima