Tag Archives: Japan

Scientific Study of Radioactive Cesium Accumulation by Salmon

By Jay T. Cullen

@JayTCullen and @FukushimaInFORM

Male spawning phase Oncorhynchus nerka. When landlocked (freshwater phase) this sockeye salmon is referred to as kokanee.

 

The purpose of this post is to report a recently published study (behind pay wall) that examined how and how much radioactive cesium is accumulated by salmonids (e.g. salmon and trout). This post is part of an series started in 2013 to communicate the results of scientific research into the impact of the Fukushima Dai-ichi triple meltdowns on the environment. Yamamoto and colleagues carried out two experiments (one lake cage experiment and a laboratory experiment) to examine the accumulation of radiocesium from water and food by kokanee (Oncorhynchus nerka) and masu salmon (Oncorhynchus masou). The conclusions of the study were as follows:

Continue reading Scientific Study of Radioactive Cesium Accumulation by Salmon

Comparing the Environmental Impacts of the Chernobyl and Fukushima Disasters

Estimated total atmospheric source term for Fukushima compared to Chernobyl in PBq (PBq = 10^15 Bq). From Steinhauser et al. (2014) SciToTEnviron

By Jay T. Cullen

This post reports on a recently published peer reviewed study by Steinhauser and colleagues in the journal Science of the Total Environment (behind pay wall) comparing the Chernobyl and Fukushima nuclear accidents. The post is part of an ongoing effort to communicate the results of scientific studies into the impact of the Fukushima disaster on the environment. A majority of the radioactivity released from both Chernobyl and Fukushima can be attributed to volatile radionuclides (noble gases, iodine, cesium, tellurium). In contrast, the amounts of more refractory elements (including actinides like plutonium), released by Chernobyl was ~four orders of magnitude (10,000 fold) higher than releases from Fukushima. The most cited source term for Chernobyl is 5300 PBq (excluding noble gases) while a review of published studies of Fukushima carried out by the authors above allow an estimate for the total atmospheric source term of 520 (a range of 340–800) PBq. Monitoring of air, soil and water for radionuclides after the respective accidents indicate that the environmental impact of Chernobyl is likely to be much greater than the Fukushima accident. The post is relatively information dense as I have provided data tables for those who are interested in the estimates and the peer-reviewed studies from which they come. Apologies up front to those who find such information tedious. Continue reading Comparing the Environmental Impacts of the Chernobyl and Fukushima Disasters

Release, Dispersion and Fate of Radioactive Strontium From Fukushima in the Northwest Pacific Ocean

By Jay T. Cullen

The purpose of this diary is to summarize recent models and measurements of the release of strontium-90 (90-Sr, half life 28.8 yr) to the ocean resulting from the triple meltdowns at the Fukushima-Daiichi nuclear power plant in March 2011. This post is part of an ongoing series aimed at understanding the impact of the disaster on the North Pacific Ocean and residents of the west coast of North America. 90-Sr is a beta-emitting element that is a radiological health concern given its relatively long half life and similar chemistry to the nutrient calcium (Ca). Previous peer-reviewed work indicate that releases of 90-Sr were about 30-10,000 fold less than 137-Cs and similar to the release of 90-Sr from the Chernobyl disaster in 1986 and about 600-fold lower than the releases from atmospheric weapons tests that peaked in the mid-1960’s. Given maximal release rates after the disaster, modeled activities of 90-Sr in the marine foodweb and in fish that accounts for bioconcentration and accumulation predict maximal dose rates from Fukushima to human consumers three orders of magnitude less than doses owing to the presence of 137-Cs in marine products and thus well below maximum dose limits thought to be detrimental to public health. Continue reading Release, Dispersion and Fate of Radioactive Strontium From Fukushima in the Northwest Pacific Ocean

Plutonium in the Pacific Ocean From Fukushima

By Jay T. Cullen

Introduction

This post is part of an ongoing series that represents an effort to communicate peer-reviewed scientific studies of the impact of the Fukushima nuclear disaster on the North Pacific Ocean and residents of the west coast of North America. A frequently asked question of those involved in monitoring the health of the North Pacific is why more measurements of the long lived, alpha-emitting isotopes of plutonium (239-Pu half-life 24,100 years; 240-Pu 6,570 years) are not being made given the potential for these isotopes to pose radiological health risks. Measurements of air, soil and water indicate that Pu was released and broadcast into the environment as a result of the triple reactor meltdowns with estimates of the source on the order of 2.3×10^9 Bq of 239,240-Pu or 580 milligrams of the isotopes. Measurements of isotope composition and activity of Pu in seawater and sediments off the coast of Japan indicate that there was no detectable change resulting from the nuclear disaster (behind pay wall). Given that the Fukushima signal is not detectable in the ocean off Japan relative to legacy sources from atmospheric weapons testing in the 20th century there is likely little information in making the same measurements in the eastern Pacific off of North America.


Members of the public are concerned about the presence of the alpha-emitting isotopes of Pu and have been asking why measuring for these elements in seawater and marine biota is not a priority of the InFORM network. The purpose of this diary is to explain why such measurements are less likely to provide information about the plume and its impacts.

A recently published paper by Bu and colleagues in the peer-reviewed Journal of Chromotography A reports the development of a new method to determine Pu isotopes in small (20 – 60 liters) samples of seawater and measurements made of these isotopes off the coast of Japan from July 2011 to January 2013 until the present. Locations where samples were collected are shown in the figure below:

Map showing seawater collection stations from the western North Pacific and Tokyo Bay since the FDNPP accident.

For all the seawater samples analyzed by Bu and colleagues, the 239-,240-Pu activities and 240-Pu/239-Pu atom ratios where found to be 0.00043 to 0.0056 Bq m^-3 and from 0.227 to 0.284, respectively. The results are summarized in Table 4 of the paper and are shown below:

 

Before the Fukushima accident in March 2011, Pu isotopes were being monitored off the coast of Japan to assess the radiological impact of the nuclear plants on the marine environment. The 239-,240-Pu activities before the meltdowns were below 0.0083 Bq m^−3 and 0.022 Bq m^−3 respectively, with 240-Pu/239-Pu atom ratios between 0.173 and 0.322. These ratios represent the influence of the Pacific Proving Ground nuclear weapon test site, which was characterized by a high 240-Pu/239-Pu atom ratio (0.30–0.36). Results after the Fukushima disaster were typically in the background data range, suggesting no detectable Pu contamination from the accident in the marine environment ~30 km offshore of the Fukushima Dai-ichi reactor complex. This conclusion is consistent with findings from previous studies of Pu isotopes in marine sediments in the western North Pacific after the Fukushima accident.

Given the absence of isotopic and concentration anomalies thus far in the western Pacific resulting from the Fukushima meltdowns there is not very much information to be gained about the evolution of the contaminated seawater plume in time and space. Similarly, the impact of the Fukushima disaster on the health of marine ecosystem with respect to Pu isotopes will be difficult to quantify relative to weapons testing background levels that persist in the environment.

On the Methodology Used to Make the Measurements (If You are Interested, IYI)
The approach used by Bu and colleagues to measure Pu isotopes at such low concentrations and activities involves applying sector field high resolution inductively coupled mass spectrometry. The instrument is able to separate chemical species by their respective mass to charge ratios using a strong electromagnetic field downstream of the plasma ionization source. Great pains were taken maximize the instruments sensitivity to measure the isotopes of interest 238-U, 239-Pu, 240-Pu, and 242-Pu. To remove the seawater matrix (cations and anions that would reduce instrument sensitivity) and elements with mass to charge ratios that would interfere with Pu detection like 238-U the seawater samples were purified using ion selective resins held in columns by passing them through successive loading and elution steps. This process is summarized in the following flow diagram from the paper:

Flow chart of the analytical procedure for the determination of Pu isotopes in seawater by anion-exchange chromatography and SF-ICP-MS.

The preconcentration and sensitivity of SF-ICP-MS allows for the very low detection limits required to quantify Pu in relatively small (20 – 60 L) volumes of seawater.

 

More Measurements of Southward Transport of the Fukushima Contaminant Plume in the Western Pacific

by Jay T. Cullen

This post is part of an ongoing series that endeavors to report measurements of Fukushima derived radionuclides in the environment to help determine the likely impact on ecosystem and public health in western North America. One of the goals of the InFORM project is to provide quality measurements of Fukushima derived radionuclides in the North Pacific to help verify model predictions of ecosystem and public health impacts of the disaster. The purpose of this post is to summarize results of a recent peer reviewed study by Kaeriyama and colleagues published in Environmental Science & Technology who measured radioactive isotopes of cesium (137-Cs half life ~30 yr and 134-Cs half life ~ 2 yr) in the western North Pacific Ocean to help track the location and movement of the Fukushima contaminated seawater plume.

Continue reading More Measurements of Southward Transport of the Fukushima Contaminant Plume in the Western Pacific