Category Archives: Fukushima

As evacuees move back, Fukushima cleanup faces daunting obstacles

Workers decontaminate a forest near Fukushima in Japan. Jeremy Sutton-Hibbert/Alamy Stock Photo
Workers decontaminate a forest near Fukushima in Japan. Jeremy Sutton-Hibbert/Alamy Stock Photo

By Dennis Normile
Originally published in Science
Mar. 2, 2017

TOKYO—Six years into a decommissioning effort expected to last into the 2050s, an official leading the work on the stricken Fukushima Daiichi Nuclear Power Plant claims that cleanup crews are making “steadfast progress.” But thorny technical obstacles must be overcome.

The 9.0-magnitude earthquake off Japan’s northeast coast on 11 March 2011 triggered one of history’s most devastating tsunamis. The one-two punch killed nearly 16,000 people, left more than 2500 missing, and wiped out infrastructure in coastal communities.

The tsunami also knocked out Fukushima’s systems for cooling its nuclear reactors, causing core meltdowns in three of the plant’s six reactors. Hydrogen explosions blew out the walls and roofs of the buildings housing units 1, 2, and 3, releasing massive amounts of radiation [editors note: explosions were in units 1, 3, and 4]. Much of the contamination was swept into the Pacific Ocean, but winds deposited fallout over parts of northeastern Japan. Some 160,000 people living near the plant were evacuated or fled on their own.

On the eve of the sixth anniversary of the disaster, officials took pride in what they view as successful efforts to minimize the health threat to surrounding communities. Radiation from the crippled reactors is no longer having an impact outside the plant, Naohiro Masuda, head of decommissioning for Fukushima owner Tokyo Electric Power Co. (TEPCO), said today at a briefing here. He noted that evacuated residents are returning to their homes as decontamination work reduces exposure levels below thresholds. At the power plant, radiation levels are now so low that the 6000 workers slowly demolishing the damaged reactor halls need only wear typical construction site safety gear except when working near the three reactors that suffered meltdowns. And radiation levels just offshore remain below the limit for drinking water set by the World Health Organization, Masuda said. Given the progress, he reiterated that TEPCO is confident they can stick to a previously set roadmap that envisions completing the decommissioning 30 to 40 years after the accident. But doing so won’t be cheap. Last December, Japan’s Ministry of Economy, Trade and Industry revised its estimate of the total cost of decommissioning up to $188 billion.

Stemming ocean contamination has been a thorny challenge. Since early in the crisis, crews have circulated water through the damaged reactors to prevent overheating that could lead to further fuel melting. That water, and groundwater flowing through the site, is heavily contaminated and TEPCO has struggled to keep it from seeping into the Pacific. Schemes to divert groundwater away from the plant and freeze a wall of soil around the reactors down to bedrock—to contain contaminated water—have minimized leaks, Masuda said.

In the meantime, TEPCO has accumulated 960,000 tons of contaminated water stored in 1000 10-meter-tall tanks at the site. TEPCO has removed cesium, strontium, and more than 50 other radionuclides from that water. But they have been stymied by tritium, a radioactive hydrogen isotope in the water. Several experimental approaches to removing the tritium “were judged to be impractical,” Masuda said.

Tritium occurs naturally in water but in minuscule concentrations. Simply releasing the tritium-laden water, perhaps after further dilution, is one disposal option, Masuda said. Another would be to evaporate the water, releasing some tritium into the atmosphere, as was done at the Three Mile Island nuclear plant in Pennsylvania after its 1979 accident. An advisory committee is now studying the problem and will hold discussions with local communities “so TEPCO will be able to act in a responsible manner in dealing with the tritium,” Masuda said.

Another major hurdle is determining the condition and location of the melted fuel, much of which is believed to have dropped to the bottoms of the containment vessels where high radiation levels preclude human entry. Robotic investigations are proving problematic. In January, the camera on a robotic probe sent into the Unit 2 containment vessel was fried by radiation, though it did return important images before its demise. Then last month, a small robot on tanklike treads was sent through a 10-centimeter-diameter pipe into the vessel to investigate the presumed location of the damaged fuel. But it got tangled up in debris and was abandoned.

TEPCO is now thinking it might need a robot able to jump over debris. And they are planning robotic investigations of the units 1 and 3 containment vessels in preparation for a planning session this summer to set a policy for recovering the melted fuel.

Posted in:

DOI: 10.1126/science.aal0849


Radioactive Refuges

by Ashley Braun
Originally in Hakai Magazine
Published: 16 Jan 2017

A heavily-exploited Japanese fish found sanctuary after the 2011 Fukushima earthquake.

You won’t catch any three-eyed mutant fish off the coast of Japan these days, but in the wake of the 2011 earthquake and tsunami you also won’t have a problem finding flounder, the latest species to suddenly flourish in a nuclear disaster zone after humans have been pushed away.

link to full article here.

Aftershock rattles Japan’s Fukushima region

A Mw 6.9 aftershock shook the Iwaki region of the coast of Japan on November 22, 2016. Considered an aftershock, since it was within 2 rupture lengths of the  2011 Great East Japan earthquake that itself ruptured a 300 km stretch of seafloor, this is just the latest shaker of the hundreds of quakes >Mw 4 that have occurred since March 11th, 5 years ago. While on the human timescale, there has been enough time for many structures to be rebuilt and life to return to normal for many, geologically speaking the M9 quake is still reasonably fresh. While aftershocks DO get more spaced out in time since the main shock, they do not necessarily become weaker and so this is unlikely to be the last tremor of this magnitude in the area. Continue reading Aftershock rattles Japan’s Fukushima region

Open Access Review of Fukushima Radionuclide Source Term, Fate and Impact in Pacific

Schematic of Fukushima Daiichi sources of 137-Cs from Buesseler et al. (in press). Atmospheric fallout (1) and direct ocean discharges (2) represent total petabecquerels (PBq = 10^15 Bq) released in the first month of the meltdowns. Groundwater fluxes (3) and river runoff (4) are approximate ranges for the first year in terabecquerels (TBq = 10^12 Bq), a unit 1,000 times smaller than the PBq used for fallout and direct discharge. Details on source term estimates can be found in the paper ( (Buesseler et al. 2017)

by Jay T Cullen

The purpose of this post is to bring to the attention of readers here a review of the available measurements and science based investigations of the Fukushima Daiichi Nuclear Power Plant (FDNPP) and its impact on the Pacific Ocean ecosystem and public health. This post is part of an ongoing effort to summarize scientifically rigorous information about the disaster for interested readers. The new paper is a product of a working group on radioactivity in the ocean convened by the Scientific Committee on Ocean Research (SCOR) an international non-governmental non-profit organization. I highly recommend this paper for anyone who wishes to better understand what the international scientific community has found about the marine release, fate and impact of FDNPP-derived radionuclides in the marine environment.  The working group was made up of 10 experts from 9 different countries, including Japan, and published the open access paper in Annual Reviews.  The main findings of the review were as follows:

  • The amount of 137Cs released from the plant was ~50-fold less than the fall out from nuclear weapons testing in the 20th century and ~5-fold lower than that released from Chernobyl in 1986. Total releases from Fukushima are similar to the discharges of 137Cs from the nuclear fuel reprocessing plant Sellafield in the UK
  • Initial releases in the weeks to months after the disaster which began on March 11, 2011 dwarf those from aggregated ongoing releases from the plant site
  • The majority of radionuclide releases ended up in the Pacific Ocean with most deposition and input occurring close to the FDNPP
  • Current range of estimates of the total 137Cs ocean source term are 15-25 PBq (PBq = 1015 Becquerel where a Bq is one nuclear decay event per second). While many other radionuclides were released from FDNPP, the most likely isotopes to represent a health risk to the marine ecosystem and public are those of Cs given their longer half-lives for radioactive decay (134Cs = ~2 yrs; 137Cs = ~30 yrs) and higher relative abundance compared to other isotopes of concern in the FDNPP source term
  • Because Cs is very soluble it rapidly dispersed in the ocean after the disaster given mixing, transport and dilution by ocean currents.  Peak levels of 137Cs occurred close to the plant in 2011 where activity concentrations near FDNPP was tens of millions of times higher than before the accident. By 2014 137Cs concentrations in the central North Pacific was about six times the remaining weapons testing fallout and about 2-3 times higher than prior fallout levels in the northeast Pacific near to North America. Most of the fallout remains concentrated in the top few hundred meters of the ocean. Measurements being made by the Fukushima InFORM project indicate that maximum 137Cs levels off the North American coast are likely to occur this year before declining to levels associated with background nuclear weapon testing before the accident by about the end of this decade
  • There are unlikely to be measurable effects on marine life with the exception of coastal areas very close to FDNPP immediately after the disaster. Monitoring of fish species in Fukushima Prefecture show that about 50% of samples in coastal waters had radiocesium levels above the Japanese 100 Bq kg-1 limit, but that by 2015 this had dropped to less than 1% measuring over the limit. High levels continue to be found in fish around and in the FDNPP port
  • Given levels in seawater and marine organisms measurable impacts to human health through contact with the ocean and the consumption of seafoods are very unlikely

There are many informative graphics and moderately technical summaries of available studies found in the new paper.  The authors highlight the difficulty of monitoring radionuclides in the ocean  given the dynamic nature of the sea and logistical challenges presented by the temporal and spatial scales and low levels of FDNPP derived contamination going forward.  In addition to providing ongoing assessments of risk to the environment from the disaster it is likely that useful information about ocean circulation will be obtained through continued monitoring efforts.

Most radioactive caesium fallout on Tokyo from Fukushima accident was concentrated in glass microparticles

by Goldschmidt Conference
Originally published by EurekAlert
26 June 2016

New research shows that most of the radioactive fallout which landed on downtown Tokyo a few days after the Fukushima accident was concentrated and deposited in non-soluble glass microparticles, as a type of ‘glassy soot’. This meant that most of the radioactive material was not dissolved in rain and running water, and probably stayed in the environment until removed by direct washing or physical removal. The particles also concentrated the radioactive caesium (Cs), meaning that in some cases dose effects of the fallout are still unclear. These results are announced at the Goldschmidt geochemistry conference in Yokohama, Japan. Continue reading Most radioactive caesium fallout on Tokyo from Fukushima accident was concentrated in glass microparticles