Fukushima Radionuclides in Pacific: Doses to Japanese and World Public Unlikely to Cause Health Damage

By Jay T. Cullen

The purpose of this post is to summarize a the most recent, peer reviewed scientific study to examine the likely impact of Fukushima contamination of the North Pacific on human health. The blog is part of a continuing series that seeks to communicate the results of scientific studies aimed at determining the impact of the triple meltdowns at the Fukushima Dai-ichi nuclear power plant (FDNPP) on ecosystem and public health. Povinec and Hirose’s recent paper in Scientific Reports examined the variation in Fukushima derived 90-Strontium (90Sr half life 28.8 years), 134-Cesium (134Cs half life ~2 years) and 137-Cesium (137Cs half life ~30 years) in seawater and biota offshore of the FDNPP and in the northwest Pacific. These isotopes are most likely to represent radiologically health risks to consumers of Pacific seafood given their propensity to concentrate in organisms and, in the case of 90Sr and 137Cs, their longevity in the environment. Doses to the Japanese and world population were estimated and compared to doses attributable to naturally occurring isotopes present in food. Doses from food caught in coastal waters right next to the FDNPP to 20 km offshore were similar to doses from naturally occurring isotopes (primarily 210Po) while doses from the consumption off fish caught in the open northwest Pacific were much lower than natural doses. In each case the individual doses are well below levels where any negative health effects would be measurable in Japan or elsewhere.

In their paper published March 12, 2015 in the open access, peer reviewed journal Scientific Reports, Povinec and Hirose investigate how radionuclides activity concentrations varied in seawater and the marine biota from 2011 to 2013. They then calculated the expected dose exposure to people consuming seafood using two separate approaches described below.

Variation of FDNPP released radionuclides in surface seawater and fish close to Japan

Seawater contamination

The activities of 90Sr and 137Cs in seawater near the North and South water outlets of the FDNPP over time are shown in the figure below:

Temporal variations of 137-Cs and 90-Sr activity concentrations in surface waters near the north (1) and south (2) water outlets at FDNPP


In March 2011 137Cs and 134Cs reached maximum activities of ~100 million Bq m-3 due to direct discharges of contaminated water to the ocean and deposition of atmospheric releases. By April 2011 dramatic decreases in releases to the plants lead to much lower 137Cs activities in seawater that were ~1000’s of times smaller than the month before.

Between 2012-2014 the 137Cs activity in seawater near the outlets varied between 100 and 10,000 Bq m-3 as can be seen in the figure. In coastal waters within 20 km of the FDNPP during the time period between November 2011 and March 2014 137Cs activity decreased dramatically relative to nearshore values and over time from 3 – 2000 Bq m-3 in 2012, to 2 – 600 Bq m-3 in 2013 (see following figure):

Temporal changes of 137-Cs activity concentrations in surface waters at monitoring sites within 20 km from the Fukushima Dai-ichi NPP

 

The 90Sr activity in seawater at the plants north and south outlets generally varied between 100 – 10,000 Bq m-3. An event in March 2012 raised 90Sr activity to 1 million Bq m-3 where more intense sporadic leakage from the site occurred. The 90Sr/137Cs in the north and south outlet seawater varied between 0.005 and 500 with total releases of 137Cs being much larger when integrated over time.

Overall the trends of contamination with time support very large direct discharges to the ocean and deposition from atmospheric releases in March-April 2011 that have dramatically decreased with time at the FDNPP site and up to 20 km offshore.

Contamination of surface and bottom dwelling fish

The 137Cs + 134Cs activity concentrations in fish caught close to the FDNPP between April 2011 and April 2013 varied several orders of magnitude from 0.5 Bq kg-1 wet weight (ww) to 15,000 Bq kg-1 ww:


Temporal variations of radiocesium (134Cs + 137Cs) concentrations in surface-dwelling fish for 2011–2013 (closed circles: Japanese Sandlance, open circles: whitebait)

while activities in bottom dwelling fish varied between 0.3 and 3000 Bq kg-1 some time later between April 2012-2014. Bottom dwelling fish tend to have higher contamination as they tend to stay in the place in areas with contaminated sediments rather than migrate in and out of contaminated zones as surface fish do.

Variation of FDNPP released radionuclides in surface seawater and fish in the open Pacific Ocean

In the NW Pacific Ocean radiocesium levels measured between 2011-2013 varied between -3 while levels in fish (bluefin and yellowfin tuna) caught in the open ocean April 2011 to November 2012 were between 0.3 to 41 Bq kg-1 ww. The 90Sr levels in seawater far offshore after Fukushima varied between -3 and in fish 0.01 to 1.2 Bq kg-1 ww where 90% of fish analyzed had no detectable 90Sr at all.

Conclusions: Estimating doses to consumers of nearshore and offshore seafood

Povinec and Hirose use two methods to calculate doses to consumers of seafood contaminated by the FDNPP meltdowns. The first method uses seawater activities and concentration factors (CF’s) of different marine organisms to determine how much radioactivity is present in food which contributes a known dose to a consumer. The second method uses the activity of radioisotopes measured or estimated in the seafood to calculate dose to the consumer.

In each case the authors assumed an average consumption of seafood based on the average Japanese diet:

  • Fish = 64 g day-1
  • Crustaceans = 5.4 g day-1
  • Shellfish = 3.5 g day-1
  • Seaweed = 10 g day-1

They determined the following:

  1. Individual dose from consumption of radiocesium and 90Sr in seafood collected from Japanese coastal waters near Fukushima between 2011-2013 would be 0.6 +/- 0.4 mSv yr-1. This is less than the maximum allowed dose to the public from non-natural sources of 1 mSv yr-1 and the world average dose from natural sources of 2.4 mSv yr-1. The dose from Fukushima contamination is similar to the dose from the naturally occurring alpha emitting isotope 210Po also present in seafood (0.7 +/- 0.4 mSv yr-1).
  2. Individual dose from consumption of radiocesium and 90Sr in seafood collected from fish caught in the open NW Pacific Ocean in 2012-2013 would be an order of magnitude smaller or 0.07 +/- 0.05 mSv yr-1 being much less significant than doses from naturally occurring isotopes.

In neither case, using conservative estimates which would tend to maximize dose to consumers (see paper Discussion for details), do the estimates of dose exceed levels where health physicists expect to see any negative health impacts to consumers. Indeed, the catch and sale of fish and seafood from Fukushima prefecture has been suspended since the disaster making the highest dose estimates very unlikely. Exposure of the Japanese public and citizens in other countries are likely to be much lower than reported by the authors.

One thought on “Fukushima Radionuclides in Pacific: Doses to Japanese and World Public Unlikely to Cause Health Damage”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s