Tag Archives: Early Earth

Background Ionizing Radiation Dose Through Geologic Time

By Jay T. Cullen

The purpose of this post is to review how the background dose of ionizing radiation has changed through geologic time until the present. I was motivated to write this by questions and misinformed statements made to me regarding the likelihood that the low levels of ionizing radiation now added to the Pacific Ocean might harm marine microbes and effectively kill the base of the oceanic food chain – given levels being measured this is for all intents and purposes impossible. This post is part of an ongoing series that summarizes the results of scientific research into the impact of the Fukushima Dai-ichi nuclear disaster on the health of the marine environment and residents of the west coast of North America. Life on Earth has been exposed to ionizing radiation since the first organisms began leaving chemical signs of their existence almost 4 billion years ago. In a paper published in 1999 Karam and Leslie calculated how the dose experienced by organisms from naturally radioactive geological and biological materials has changed over time. They find that overall the annual beta and gamma dose experienced by organisms has dropped from about 7 millisievert (mSv = 0.001 Sv) 4 billion years ago to about 1.4 mSv today. Given the similarity of repair mechanisms that organisms use to cope with damage from ionizing radiation it is likely that these mechanisms evolved early in Earth’s history which may explain why organisms are capable of dealing with higher than background doses in the environment today. Continue reading Background Ionizing Radiation Dose Through Geologic Time