Category Archives: Seawater

Fukushima Radionuclides in Pacific: Doses to Japanese and World Public Unlikely to Cause Health Damage

By Jay T. Cullen

The purpose of this post is to summarize a the most recent, peer reviewed scientific study to examine the likely impact of Fukushima contamination of the North Pacific on human health. The blog is part of a continuing series that seeks to communicate the results of scientific studies aimed at determining the impact of the triple meltdowns at the Fukushima Dai-ichi nuclear power plant (FDNPP) on ecosystem and public health. Povinec and Hirose’s recent paper in Scientific Reports examined the variation in Fukushima derived 90-Strontium (90Sr half life 28.8 years), 134-Cesium (134Cs half life ~2 years) and 137-Cesium (137Cs half life ~30 years) in seawater and biota offshore of the FDNPP and in the northwest Pacific. These isotopes are most likely to represent radiologically health risks to consumers of Pacific seafood given their propensity to concentrate in organisms and, in the case of 90Sr and 137Cs, their longevity in the environment. Doses to the Japanese and world population were estimated and compared to doses attributable to naturally occurring isotopes present in food. Doses from food caught in coastal waters right next to the FDNPP to 20 km offshore were similar to doses from naturally occurring isotopes (primarily 210Po) while doses from the consumption off fish caught in the open northwest Pacific were much lower than natural doses. In each case the individual doses are well below levels where any negative health effects would be measurable in Japan or elsewhere. Continue reading Fukushima Radionuclides in Pacific: Doses to Japanese and World Public Unlikely to Cause Health Damage

Dramatic Decrease of Fukushima Derived Radionuclides in the Northwest Pacific Ocean 2011-2012

By Jay T. Cullen

A schematic view of the formation and subduction of mode waters in the North Pacific

The purpose of this diary is to report on a recently published (Jan 2015) open-access, peer reviewed study which examined the activities of 137Cs (half life 30.2 yr), 134Cs (half life ~2.1 yr) and 90Sr (half life ~28.8 yr) in the northwest Pacific off the coasts of Japan and China. The diary is part of a ongoing effort to communicate the results of scientific research into the impact of the Fukushima Dai-ichi nuclear disaster on environmental and public health. Men and colleagues report on how activities of these fission produced isotopes changed between three research expeditions in June 2011, December 2011 and June 2012. Activities in seawater decreased dramatically through time for all three isotopes consistent with very high release rates measured from the Fukushima site in March-April 2011 followed by ongoing but many orders of magnitude (10,000 – 100,000 fold) lower releases from the site thereafter. By 2012 the impact of the Fukushima releases could be still be detected in most samples for Cs isotopes however 90Sr distributions were much more uniform with the highest measured activity only slightly above the pre-Fukushima background. These results are consistent with:

  1. the relatively small source term for 90Sr from compared with the Cs isotopes from Fukushima as determined by measurements of air, soil and water after the disaster
  2. the much lower Fukushima derived activities for these isotopes in the eastern Pacific off of North America being measured given decay and mixing of the contamination as it is transported by ocean currents

Continue reading Dramatic Decrease of Fukushima Derived Radionuclides in the Northwest Pacific Ocean 2011-2012

Observing the Arrival of the Fukushima Contamination Plume in North American Coastal Waters

By Jay T. Cullen

@JayTCullen and @FukushimaInFORM

This short blog summarizes an open access paper published today reporting results from a Canadian monitoring program tasked with documenting the arrival of ocean borne Fukushima contamination along the North American Pacific coast. This diary is part of an ongoing effort to communicate the best science available on the impacts of the Fukushima Dai-ichi meltdowns on the environment. High quality measurements to look for Fukushima derived radiocesium were made in seawater in the North Pacific and Arctic Oceans from 2011 to early 2014. The authors concluded that:

  1. Fukushima derived radiocesium was first detected 1500 km west of British Columbia Canada in June 2012
  2. Contamination was detected on the continental shelf (near coastal waters) in June 2013
  3. By February 2014 Fukushima radiocesium was present at levels similar to preexisting weapons testing derived 137-Cs
  4. The timing of the arrival and levels of radiocesium in the contaminated plume are in reasonable agreement with existing ocean circulation model predictions
  5. These same models predict that total radiocesium levels from weapons testing fallout and Fukushima will likely reach maximum values of ~3-5 Becquerel per cubic meter (Bq m-3 of seawater in 2015-2016 and then decline to fallout background level of ~1 Bq m-3 by 2021
  6. Fukushima will increase northeastern Pacific water to levels last seen in the 1980’s but does not represent a threat to environmental or human health

Continue reading Observing the Arrival of the Fukushima Contamination Plume in North American Coastal Waters

Comparing the Environmental Impacts of the Chernobyl and Fukushima Disasters

Estimated total atmospheric source term for Fukushima compared to Chernobyl in PBq (PBq = 10^15 Bq). From Steinhauser et al. (2014) SciToTEnviron

By Jay T. Cullen

This post reports on a recently published peer reviewed study by Steinhauser and colleagues in the journal Science of the Total Environment (behind pay wall) comparing the Chernobyl and Fukushima nuclear accidents. The post is part of an ongoing effort to communicate the results of scientific studies into the impact of the Fukushima disaster on the environment. A majority of the radioactivity released from both Chernobyl and Fukushima can be attributed to volatile radionuclides (noble gases, iodine, cesium, tellurium). In contrast, the amounts of more refractory elements (including actinides like plutonium), released by Chernobyl was ~four orders of magnitude (10,000 fold) higher than releases from Fukushima. The most cited source term for Chernobyl is 5300 PBq (excluding noble gases) while a review of published studies of Fukushima carried out by the authors above allow an estimate for the total atmospheric source term of 520 (a range of 340–800) PBq. Monitoring of air, soil and water for radionuclides after the respective accidents indicate that the environmental impact of Chernobyl is likely to be much greater than the Fukushima accident. The post is relatively information dense as I have provided data tables for those who are interested in the estimates and the peer-reviewed studies from which they come. Apologies up front to those who find such information tedious. Continue reading Comparing the Environmental Impacts of the Chernobyl and Fukushima Disasters

Plutonium in the Pacific Ocean From Fukushima

By Jay T. Cullen

Introduction

This post is part of an ongoing series that represents an effort to communicate peer-reviewed scientific studies of the impact of the Fukushima nuclear disaster on the North Pacific Ocean and residents of the west coast of North America. A frequently asked question of those involved in monitoring the health of the North Pacific is why more measurements of the long lived, alpha-emitting isotopes of plutonium (239-Pu half-life 24,100 years; 240-Pu 6,570 years) are not being made given the potential for these isotopes to pose radiological health risks. Measurements of air, soil and water indicate that Pu was released and broadcast into the environment as a result of the triple reactor meltdowns with estimates of the source on the order of 2.3×10^9 Bq of 239,240-Pu or 580 milligrams of the isotopes. Measurements of isotope composition and activity of Pu in seawater and sediments off the coast of Japan indicate that there was no detectable change resulting from the nuclear disaster (behind pay wall). Given that the Fukushima signal is not detectable in the ocean off Japan relative to legacy sources from atmospheric weapons testing in the 20th century there is likely little information in making the same measurements in the eastern Pacific off of North America.


Members of the public are concerned about the presence of the alpha-emitting isotopes of Pu and have been asking why measuring for these elements in seawater and marine biota is not a priority of the InFORM network. The purpose of this diary is to explain why such measurements are less likely to provide information about the plume and its impacts.

A recently published paper by Bu and colleagues in the peer-reviewed Journal of Chromotography A reports the development of a new method to determine Pu isotopes in small (20 – 60 liters) samples of seawater and measurements made of these isotopes off the coast of Japan from July 2011 to January 2013 until the present. Locations where samples were collected are shown in the figure below:

Map showing seawater collection stations from the western North Pacific and Tokyo Bay since the FDNPP accident.

For all the seawater samples analyzed by Bu and colleagues, the 239-,240-Pu activities and 240-Pu/239-Pu atom ratios where found to be 0.00043 to 0.0056 Bq m^-3 and from 0.227 to 0.284, respectively. The results are summarized in Table 4 of the paper and are shown below:

 

Before the Fukushima accident in March 2011, Pu isotopes were being monitored off the coast of Japan to assess the radiological impact of the nuclear plants on the marine environment. The 239-,240-Pu activities before the meltdowns were below 0.0083 Bq m^−3 and 0.022 Bq m^−3 respectively, with 240-Pu/239-Pu atom ratios between 0.173 and 0.322. These ratios represent the influence of the Pacific Proving Ground nuclear weapon test site, which was characterized by a high 240-Pu/239-Pu atom ratio (0.30–0.36). Results after the Fukushima disaster were typically in the background data range, suggesting no detectable Pu contamination from the accident in the marine environment ~30 km offshore of the Fukushima Dai-ichi reactor complex. This conclusion is consistent with findings from previous studies of Pu isotopes in marine sediments in the western North Pacific after the Fukushima accident.

Given the absence of isotopic and concentration anomalies thus far in the western Pacific resulting from the Fukushima meltdowns there is not very much information to be gained about the evolution of the contaminated seawater plume in time and space. Similarly, the impact of the Fukushima disaster on the health of marine ecosystem with respect to Pu isotopes will be difficult to quantify relative to weapons testing background levels that persist in the environment.

On the Methodology Used to Make the Measurements (If You are Interested, IYI)
The approach used by Bu and colleagues to measure Pu isotopes at such low concentrations and activities involves applying sector field high resolution inductively coupled mass spectrometry. The instrument is able to separate chemical species by their respective mass to charge ratios using a strong electromagnetic field downstream of the plasma ionization source. Great pains were taken maximize the instruments sensitivity to measure the isotopes of interest 238-U, 239-Pu, 240-Pu, and 242-Pu. To remove the seawater matrix (cations and anions that would reduce instrument sensitivity) and elements with mass to charge ratios that would interfere with Pu detection like 238-U the seawater samples were purified using ion selective resins held in columns by passing them through successive loading and elution steps. This process is summarized in the following flow diagram from the paper:

Flow chart of the analytical procedure for the determination of Pu isotopes in seawater by anion-exchange chromatography and SF-ICP-MS.

The preconcentration and sensitivity of SF-ICP-MS allows for the very low detection limits required to quantify Pu in relatively small (20 – 60 L) volumes of seawater.